Email encryption is encryption of email messages to protect the content from being read by entities other than the intended recipients. Email encryption may also include authentication.
Email is prone to the disclosure of information. Although many emails are encrypted during transmission, they are frequently stored in plaintext, potentially exposing them to unauthorized access by third parties, including email service providers. By default, popular email services such as Gmail and Outlook do not enable end-to-end encryption. Utilizing certain available tools, unauthorized individuals may access and read the email content. SMEmail – A New Protocol for the Secure E-mail in Mobile Environments, Proceedings of the Australian Telecommunications Networks and Applications Conference (ATNAC'08), pp. 39–44, Adelaide, Australia, Dec. 2008.
Email encryption can rely on public-key cryptography, in which users can each publish a public key that others can use to encrypt messages to them, while keeping secret a private key they can use to decrypt such messages or to digitally encrypt and sign messages they send.
The encrypted message is revealed, and can be altered by, intermediate email relays. In other words, the encryption takes place between individual SMTP relays, not between the sender and the recipient. This has both good and bad consequences. A key positive trait of transport layer encryption is that users do not need to do or change anything; the encryption automatically occurs when they send email. In addition, since receiving organizations can decrypt the email without cooperation of the end user, receiving organizations can run Computer virus scanners and spam filters before delivering the email to the recipient. However, it also means that the receiving organization and anyone who breaks into that organization's email system (unless further steps are taken) can easily read or modify the email. If the receiving organization is considered a threat, then end-to-end encryption is necessary.
The Electronic Frontier Foundation encourages the use of STARTTLS, and has launched the 'STARTTLS Everywhere' initiative to "make it simple and easy for everyone to help ensure their communications (over email) aren’t vulnerable to mass surveillance." Support for STARTTLS has become quite common; Google reports that on Gmail, 90% of incoming email and 90% of outgoing email was encrypted using STARTTLS by July 24, 2018.
Mandatory certificate verification is historically not viable for Internet mail delivery without additional information, because many certificates are not verifiable and few want email delivery to fail in that case. As a result, most email that is delivered over TLS uses only opportunistic encryption. DANE is a proposed standard that makes an incremental transition to verified encryption for Internet mail delivery possible. The STARTTLS Everywhere project uses an alternative approach: they support a “preload list” of email servers that have promised to support STARTTLS, which can help detect and prevent Downgrade attack.
Notable protocols for end-to-end email encryption include:
OpenPGP is a data encryption standard that allows end-users to encrypt the email contents. There are various software and email-client plugins that allow users to encrypt the message using the recipient's public key before sending it. At its core, OpenPGP uses a Public Key Cryptography scheme where each email address is associated with a public/private key pair.
OpenPGP provides a way for the end users to encrypt the email without any support from the server and be sure that only the intended recipient can read it. However, there are usability issues with OpenPGP — it requires users to set up public/private key pairs and make the public keys available widely. Also, it protects only the content of the email, and not metadata — an untrusted party can still observe who sent an email to whom. A general downside of end to end encryption schemes—where the server does not have decryption keys—is that it makes server side search almost impossible, thus impacting usability.
The content of an email can also be end-to-end encrypted by putting it in an encrypted file (using any kind of file encryption tool) and sending that encrypted file as an email attachment.
Most full-featured email clients provide native support for S/MIME secure email (digital signing and message encryption using certificates). Other encryption options include PGP and GNU Privacy Guard (GnuPG). Free and commercial software (desktop application, webmail and add-ons) are available as well.Eric Geier, PCWorld. " How to Encrypt Your Email." April 25, 2012. Retrieved May 28, 2014.
While PGP can protect messages, it can also be hard to use in the correct way. Researchers at Carnegie Mellon University published a paper in 1999 showing that most people couldn't figure out how to sign and encrypt messages using the current version of PGP.Klint Finley, WIRED. " Google's Revamped Gmail Could Take Encryption Mainstream." Apr 23, 2014. Retrieved June 04, 2014. Eight years later, another group of Carnegie Mellon researchers published a follow-up paper saying that, although a newer version of PGP made it easy to decrypt messages, most people still struggled with encrypting and signing messages, finding and verifying other people's public encryption keys, and sharing their own keys.In Security and Usability: Designing Secure Systems that People Can Use, eds. L. Cranor and G. Simson. O'Reilly, 2005, pp. 679-702. " Why Johnny Can’t Encrypt."
Because encryption can be difficult for users, security and compliance managers at companies and government agencies automate the process for employees and executives by using encryption appliances and services that automate encryption. Instead of relying on voluntary co-operation, automated encryption, based on defined policies, takes the decision and the process out of the users' hands. Emails are routed through a gateway appliance that has been configured to ensure compliance with regulatory and security policies. Emails that require it are automatically encrypted and sent.By Luis Rivera, SC Magazine. " Protecting customer privacy through email encryption." March 11, 2014. July 18, 2014.
If the recipient works at an organization that uses the same encryption gateway appliance, emails are automatically decrypted, making the process transparent to the user. Recipients who are not behind an encryption gateway then need to take an extra step, either procuring the public key, or logging into an online portal to retrieve the message.
|
|